If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-144x+121=0
a = 25; b = -144; c = +121;
Δ = b2-4ac
Δ = -1442-4·25·121
Δ = 8636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8636}=\sqrt{4*2159}=\sqrt{4}*\sqrt{2159}=2\sqrt{2159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-2\sqrt{2159}}{2*25}=\frac{144-2\sqrt{2159}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+2\sqrt{2159}}{2*25}=\frac{144+2\sqrt{2159}}{50} $
| 51+(2x+3)=18- | | d*5/6=5/7 | | 3(v-1)=5v+3-2(-3v-3) | | x+70=70 | | 4n-8=12n+8 | | 318=6•3^x | | 3n+n-3n=15 | | y–9=–14 | | -20+2t=3t | | 50=14-2x | | W(2w)=242 | | -26=1/3m+5;-7 | | (-2)(x)=9 | | 2x^2=11x=6 | | 5x−9=5x− | | -3(x+3)=3x-7+2(5x+8) | | g+3=18 | | -3p+2p=-14 | | 20x=24=14x | | 2w^2-242=0 | | 39.99m+0.45=44.99+0.40 | | 4/16=w/20 | | s-13=1 | | 40/50=20/n | | 56x=9 | | x+x-10+x-10=180 | | 93+3x+18=90 | | 151000000=1.19n | | 10x-8+6x+2=90 | | 4x–5=3x+1 | | 7×+6=90-5x | | 4m^2−21m+10=−5m^2 |